Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[(15,1'S)-1,1'-(4-amino-4H-1,2,4-triazole-3.5-divl)diethanol- κN^1]bis(nitratoκO)zinc

Xun-Gao Liu,^{a,b}* Liang Shen,^a Qi-Suo Cai^a and Ma Luo^a

^aCollege of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People's Republic of China, and ^bState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: xgliu07@gmail.com

Received 4 January 2012; accepted 14 January 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.088; data-to-parameter ratio = 16.0.

In the title homochiral mononuclear compound, $[Zn(NO_3)_2]$ - $(C_6H_{12}N_4O_2)_2$, the Zn^{II} atom is located on a twofold rotation axis and coordinated by two N atoms from two ligands and two O atoms from two NO3⁻ anions, adopting a distorted tetrahedral coordination geometry. The compound is enantiomerically pure and corresponds to the S diastereoisomer, with the optical activity originating from the chiral ligand. In the crystal, molecules are connected into three-dimensional supramolecular networks through $O-H\cdots O$, $O-H\cdots N$ and N-H···O hydrogen bonds.

Related literature

For 4-amino-4H-1,2,4-triazole transition metal complexes, see: Zhai et al. (2006); Yi et al. (2004). For the non-linear optical properties of chiral coordination compounds, see: Evans & Lin (2002). For uses of chiral coordination compounds, see: Hang et al. (2011); Lin (2010).

Experimental

Crystal data $[Zn(NO_3)_2(C_6H_{12}N_4O_2)_2]$ $M_r = 533.78$

Tetragonal, P41212 a = 12.1252 (7) Å

c = 14.6108 (17) ÅV = 2148.1 (3) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEX DUO diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min} = 0.767, \ T_{\max} = 0.862$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.088$	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
2463 reflections	Absolute structure: Flack (1983),
154 parameters	993 Friedel pairs
378 restraints	Flack parameter: -0.022 (15)

Table 1

Selected geometric parameters (Å, °).

Zn1-N1	2.0239 (19)	Zn1-O3	2.071 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1 \cdots O2^{ii}$	0.82	2.07	2.867 (3)	163
$N4 - H4B \cdots O5^{ii}$	0.89	2.51	3.142 (5)	129
$D2 - H2 \cdot \cdot \cdot N2^{iii}$	0.82	2.13	2.943 (3)	174
$N4 - H4C \cdots O4^{iv}$	0.89	2.40	3.022 (4)	127
·····		- 1 7. (:::)		- 13. (in)

Symmetry codes: (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + \frac{7}{4}$; (iii) $-y + 2, -x + 2, -z + \frac{3}{2}$; (iv) $-x + 2, -v + 2, z - \frac{1}{2}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-*Plus* (Bruker, 2000); data reduction: *SAINT-Plus*; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg & Putz, 2007); software used to prepare material for publication: SHELXTL.

The authors thank Yuan Deng for collecting the X-ray crystal data. We are also grateful to the National Natural Science Foundation of China (21101048), the Qianjiang Talent Projects of Zhejiang Province (2011R10091), the Education Office of Zhejiang Province (201065XP139) and Hangzhou Normal University (HSKQ0007) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2051).

References

- Brandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2000). SMART, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hang, T., Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2011). Chem. Soc. Rev. 40, 3577-3598

 $\mu = 1.22 \text{ mm}^{-1}$

 $0.36 \times 0.18 \times 0.12 \text{ mm}$

7446 measured reflections

2463 independent reflections 2154 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.032$

- Lin, W. (2010). Top. Catal. 53, 869–875.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43.

Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126–2135.

supplementary materials

Acta Cryst. (2012). E68, m191-m192 [doi:10.1107/S1600536812001754]

$Bis[(1S,1'S)-1,1'-(4-amino-4H-1,2,4-triazole-3,5-diyl)diethanol-\kappa N^{1}]bis(nitrato-\kappa O)zinc$

X.-G. Liu, L. Shen, Q.-S. Cai and M. Luo

Comment

Chiral coordination complexes have received considerable attention due to their potential applications in the area of ferroelectrics, enantiopure catalysis and separation (Hang *et al.*, 2011; Lin *et al.*, 2010). Among the different approaches to synthesize chiral coordination compounds, the most effective synthetic strategy is to use optically pure chiral ligands. Herein, we report a chiral zinc coordination compound (S)-[Zn(deoatrz)₂(NO₃)₂], by using an enantiopure (1*S*,1'*S*)-1,1'-(4-amino-4*H*-1,2,4-triazole-3,5-diyl)diethanol (deoatrz), reacting with zinc salts. Furthermore, its structure is characterized.

Single crystal structural analysis reveals that the title compound crystallizes in the tetragonal system, chiral space group P4₁2₁2. The title compound is a mononuclear and its asymmetric unit consists of one Zn atom, two deoatrz ligands and two NO₃– anions (Fig. 1). The Zn atom is coordinated by two N atoms (N1, N1A) from two deoatrz ligands and two NO₃– anions (O3, O3A), adopting a distorted tetrahedral coordination geometry. The Zn—O and Zn—N bond lengths are 2.071 (2) and 2.024 (1) Å, respectively. The bond angles around Zn atom vary from 95.9 (8) to 143.5 (1)^o.

As shown in Fig. 2, the interesting H-bonds are observed in the title compound. The fundamentally units are one dimensional chiral hydrogen bond chains along c axis, and subsequently the chains are connected into three-dimensional chiral supramolecular networks through O—H···O, O—H···O hydrogen bond interactions.

Experimental

An 10 ml ethanol solution of (1S,1'S)-1,1'-(4-amino-4*H*-1,2,4-triazole -3,5-diyl)diethanol (0.2 mmol, 0.0344 g) and Zn(NO₃)_{2.6}H₂O (0.10 mmol, 0.0298 g) was stirred for five minutes and then filtered. The filtrate was carefully layered with 10 ml ethyl ether. After one week, colorless needle-like crystals of the title compound were obtained. Yield: 45%.

Refinement

All H atoms were put in calculated positions. All H atoms were refined with $U_{iso}(H) = 1.2U_{eq}(N \text{ and } O)$ and $U_{iso}(H) = 1.2 \text{ or } 1.5U_{eq}(C)$.

Figures

Fig. 1. Coordination geometry of Znic in the title compound with atomic labeling scheme. Thermal ellipsoids are at the 30% probability level. All H atoms except those attached to O and N atoms are omitted for clarity.

Fig. 2. The hydrogen-bonded chains in the title compound along the c axis.

Fig. 3. Three dimensional hydrogen-bonded supramolecular networks in the title compound Viewed from c dimension.

Bis[(15,1'S)-1,1'-(4-amino-4H-1,2,4-triazole-3,5- diyl)diethanol- κN^1]bis(nitrato- κO)zinc

Crystal data

$[Zn(NO_3)_2(C_6H_{12}N_4O_2)_2]$	$D_{\rm x} = 1.651 {\rm ~Mg~m}^{-3}$
$M_r = 533.78$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Tetragonal, P4 ₁ 2 ₁ 2	Cell parameters from 7446 reflections
Hall symbol: P 4abw 2nw	$\theta = 1.7 - 27.5^{\circ}$
a = 12.1252 (7) Å	$\mu = 1.22 \text{ mm}^{-1}$
c = 14.6108 (17) Å	<i>T</i> = 298 K
$V = 2148.1 (3) \text{ Å}^3$	Needle, colourless
Z = 4	$0.36 \times 0.18 \times 0.12 \text{ mm}$
F(000) = 1104	

Data collection

Bruker APEX DUO diffractometer	2463 independent reflections
Radiation source: fine-focus sealed tube	2154 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -15 \rightarrow 9$
$T_{\min} = 0.767, \ T_{\max} = 0.862$	$k = -15 \rightarrow 13$
7446 measured reflections	$l = -18 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.2512P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
2463 reflections	$\Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$
378 restraints	Absolute structure: Flack (1983), 993 Friedel pairs

Primary atom site location: structure-invariant direct methods Flack parameter: -0.022 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.92340 (3)	0.92340 (3)	1.0000	0.03222 (13)
01	0.72436 (18)	0.90461 (18)	0.95521 (12)	0.0417 (5)
H1	0.7021	0.8493	0.9817	0.063*
O2	1.13628 (15)	0.75723 (17)	0.67187 (13)	0.0336 (4)
H2	1.1479	0.8235	0.6777	0.050*
O3	1.09002 (17)	0.89583 (19)	1.02136 (13)	0.0464 (5)
O4	1.0802 (3)	1.0273 (3)	1.1173 (3)	0.1176 (14)
05	1.2371 (2)	0.9742 (3)	1.0727 (2)	0.0758 (9)
N1	0.91797 (19)	0.85483 (18)	0.87379 (13)	0.0285 (5)
N2	1.00505 (19)	0.81575 (19)	0.82025 (13)	0.0279 (5)
N3	0.84957 (17)	0.80180 (17)	0.74473 (15)	0.0271 (4)
N4	0.7738 (2)	0.7823 (2)	0.67330 (16)	0.0427 (6)
H4B	0.7928	0.7208	0.6440	0.064*
H4C	0.7753	0.8388	0.6345	0.064*
N5	1.1372 (2)	0.9678 (2)	1.07029 (17)	0.0417 (6)
C1	0.8266 (2)	0.8474 (2)	0.82697 (16)	0.0273 (5)
C2	0.9608 (2)	0.7841 (2)	0.74215 (16)	0.0262 (5)
C3	0.7171 (2)	0.8883 (2)	0.85876 (17)	0.0332 (6)
Н3	0.6595	0.8343	0.8446	0.040*
C4	0.6903 (3)	0.9988 (3)	0.8141 (2)	0.0467 (8)
H4D	0.6216	1.0261	0.8377	0.070*
H4E	0.6844	0.9892	0.7490	0.070*
H4F	0.7479	1.0507	0.8274	0.070*
C5	1.0219 (2)	0.7390 (2)	0.66148 (17)	0.0299 (6)
Н5	0.9968	0.7776	0.6063	0.036*
C6	1.0044 (3)	0.6164 (3)	0.6482 (2)	0.0460 (8)
H6A	1.0389	0.5934	0.5923	0.069*
H6B	0.9268	0.6011	0.6452	0.069*
H6C	1.0363	0.5770	0.6987	0.069*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03548 (17)	0.03548 (17)	0.02569 (18)	0.0024 (2)	0.00483 (13)	-0.00483 (13)
O1	0.0449 (12)	0.0468 (14)	0.0334 (9)	-0.0032 (10)	0.0117 (9)	0.0021 (9)
O2	0.0277 (10)	0.0310 (11)	0.0420 (9)	0.0005 (8)	0.0038 (8)	-0.0056 (9)
O3	0.0380 (12)	0.0514 (13)	0.0497 (10)	0.0025 (9)	-0.0045 (9)	-0.0172 (9)
O4	0.0629 (19)	0.112 (3)	0.178 (3)	0.0013 (19)	-0.005 (2)	-0.105 (3)
O5	0.0356 (15)	0.102 (2)	0.0901 (18)	0.0029 (14)	-0.0133 (13)	-0.0283 (17)
N1	0.0269 (11)	0.0310 (11)	0.0277 (9)	0.0003 (10)	0.0016 (9)	-0.0025 (8)
N2	0.0260 (11)	0.0307 (11)	0.0269 (9)	0.0038 (9)	-0.0002 (8)	-0.0031 (8)
N3	0.0242 (10)	0.0296 (10)	0.0275 (8)	-0.0036 (8)	-0.0028 (9)	-0.0012 (9)
N4	0.0409 (14)	0.0495 (16)	0.0378 (10)	-0.0041 (11)	-0.0161 (11)	-0.0046 (12)
N5	0.0369 (15)	0.0375 (14)	0.0508 (13)	0.0048 (11)	-0.0053 (11)	-0.0062 (12)
C1	0.0282 (13)	0.0250 (13)	0.0288 (10)	-0.0015 (10)	0.0020 (10)	0.0035 (10)
C2	0.0265 (11)	0.0248 (12)	0.0272 (10)	-0.0010 (9)	-0.0026 (10)	0.0020 (10)
C3	0.0265 (14)	0.0394 (15)	0.0336 (11)	-0.0004 (11)	0.0022 (10)	0.0016 (11)
C4	0.0406 (18)	0.0481 (19)	0.0515 (16)	0.0162 (15)	0.0033 (14)	0.0044 (15)
C5	0.0278 (13)	0.0339 (14)	0.0281 (10)	0.0028 (11)	-0.0015 (10)	-0.0028 (10)
C6	0.0423 (18)	0.0410 (18)	0.0546 (17)	-0.0048 (15)	0.0031 (15)	-0.0171 (14)

Geometric parameters (Å, °)

Zn1—N1	2.0239 (19)	N3—N4	1.410 (3)
Zn1—N1 ⁱ	2.0239 (19)	N4—H4B	0.8900
Zn1—O3	2.071 (2)	N4—H4C	0.8900
Zn1—O3 ⁱ	2.071 (2)	C1—C3	1.492 (4)
O1—C3	1.426 (3)	C2—C5	1.496 (4)
O1—H1	0.8200	C3—C4	1.525 (4)
O2—C5	1.412 (3)	С3—Н3	0.9800
O2—H2	0.8200	C4—H4D	0.9600
O3—N5	1.265 (3)	C4—H4E	0.9600
O4—N5	1.212 (4)	C4—H4F	0.9600
O5—N5	1.215 (4)	C5—C6	1.514 (4)
N1—C1	1.305 (3)	С5—Н5	0.9800
N1—N2	1.397 (3)	С6—Н6А	0.9600
N2—C2	1.318 (3)	С6—Н6В	0.9600
N3—C1	1.352 (3)	С6—Н6С	0.9600
N3—C2	1.366 (3)		
N1—Zn1—N1 ⁱ	143.46 (13)	N2—C2—C5	125.9 (2)
N1—Zn1—O3	95.90 (8)	N3—C2—C5	124.6 (2)
N1 ⁱ —Zn1—O3	104.96 (8)	O1—C3—C1	107.4 (2)
N1—Zn1—O3 ⁱ	104.96 (8)	O1—C3—C4	108.4 (2)
$N1^{i}$ —Zn1—O3 ⁱ	95.90 (8)	C1—C3—C4	110.4 (2)
O3—Zn1—O3 ⁱ	109.73 (13)	O1—C3—H3	110.2
C3—O1—H1	109.5	С1—С3—Н3	110.2

С5—О2—Н2	109.5	С4—С3—Н3	110.2
N5—O3—Zn1	114.52 (17)	C3—C4—H4D	109.5
C1—N1—N2	108.94 (19)	С3—С4—Н4Е	109.5
C1—N1—Zn1	122.26 (18)	H4D—C4—H4E	109.5
N2—N1—Zn1	128.68 (16)	C3—C4—H4F	109.5
C2—N2—N1	106.0 (2)	H4D—C4—H4F	109.5
C1—N3—C2	107.0 (2)	H4E—C4—H4F	109.5
C1—N3—N4	126.3 (2)	O2—C5—C2	110.2 (2)
C2—N3—N4	126.6 (2)	O2—C5—C6	107.8 (2)
N3—N4—H4B	109.2	C2—C5—C6	113.0 (2)
N3—N4—H4C	109.2	O2—C5—H5	108.6
H4B—N4—H4C	109.5	С2—С5—Н5	108.6
O4—N5—O5	120.9 (3)	С6—С5—Н5	108.6
O4—N5—O3	118.2 (3)	С5—С6—Н6А	109.5
O5—N5—O3	120.8 (3)	С5—С6—Н6В	109.5
N1—C1—N3	108.6 (2)	Н6А—С6—Н6В	109.5
N1—C1—C3	124.7 (2)	С5—С6—Н6С	109.5
N3—C1—C3	126.6 (2)	Н6А—С6—Н6С	109.5
N2-C2-N3	109.4 (2)	H6B—C6—H6C	109.5

Symmetry codes: (i) y, x, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	$D -\!\!\!\!- \!$
O1—H1···O2 ⁱⁱ	0.82	2.07	2.867 (3)	163.
N4—H4B···O5 ⁱⁱ	0.89	2.51	3.142 (5)	129.
O2—H2···N2 ⁱⁱⁱ	0.82	2.13	2.943 (3)	174.
N4—H4C···O4 ^{iv}	0.89	2.40	3.022 (4)	127.

Symmetry codes: (ii) x-1/2, -y+3/2, -z+7/4; (iii) -y+2, -x+2, -z+3/2; (iv) -x+2, -y+2, z-1/2.

Fig. 1

Fig. 2

Fig. 3

